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Abstract

As we vary k, is there an upper limit on the number of solutions (t, u) for
the equation k2 − 5 = t2 − 5u2? This article asserts that there is not, and
employs an unusual argument to support this claim, one that could be of
wider significance to those working on problems in number theory.



Not long ago, I was trying to prove

Conjecture 0.1. Define a Hikorski Triple (or HT)[1] as (a, b, c) where a, b
and c = ab+1

a+b
are all natural numbers. Show that the number of HTs whose

three elements add to k is unbounded as k →∞.

This reduced to

Conjecture 0.2. Show that as we vary k, the equation k2−5 = t2−5u2 can
have arbitrarily many integer solutions for t and u.

Or to put this another way, show that, given any n in N, we can find a k
in N so that k2 − 5 = t2 − 5u2 has more than n integer solutions (t, u).

A ‘proof’ of Conjecture 0.2 did emerge, but not one that would pass any
strict tests of rigour. It did, however, utilise a neat trick that I hope might
be of interest to Mathematical Spectrum readers.

Preliminary computer searches suggest that 3230 will prove to be a fruitful
choice for k, one where many (t, u) solutions are possible. In this case,
k2 − 5 = 10432895 = 5.11.29.31.211. Now

5.11.29.31.211 = (52−5×22)(42−5×12)(72−5×22)(62−5×12)(162−5×32).

This suggests that if p is a prime dividing k2 − 5, then p can always be
written as x2 − 5y2. Are there primes that can’t be expressed as x2 − 5y2

for some integers x and y? The prime 2 cannot be so expressed, since
2 = x2 − 5y2 ⇒ 2 ≡ x2 mod 5 ⇒ 2 is a quadratic residue mod 5, which is
untrue. Noting that 5 = 52 − 5 × 22, take now an odd prime p that is not

equal to 5. If p = x2 − 5y2 then p ≡ x2 mod 5, which means

p
−
5

 = 1,

where

a
−
b

 is the Legendre symbol. Now p is congruent to 1, 2, 3 or 4 mod

5, and 1 and 4 are squares, so 1 and 4 are quadratic residues mod 5, while 2
and 3 are not. This gives us p = 5(2m) + 1 or 5(2m+ 1) + 4, since p is odd,
and so p must be of the form 10m+ 1 or 10m+ 9.

In fact, the implication can be reversed, although not straightforwardly;
we can quote
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Theorem 0.3. For an odd prime p 6= 5, p can be expressed as x2 − 5y2 if
and only if p = 10m+ 1 or p = 10m+ 9.

This is a special case of a much larger result concerning the representation
of primes by quadratic forms [2].

We now return to

Theorem 0.4. If p 6= 2 is a prime dividing k2 − 5, then p can be written as
x2 − 5y2.

Proof. We know 5 can be so expressed, so suppose p 6= 5. Then k2 ≡ 5

mod p, so

5
−
p

 = 1. Now by the Theorem of Quadratic Reciprocity,

5
−
p


=

p
−
5

, so p is congruent to 1 or 4 mod 5, so p is congruent to 1 or 9 mod

10 (since p is odd). Hence by Theorem (0.3), p can be expressed as x2− 5y2.

So writing k2−5 for k even as a product of primes, all of which are of the
form x2 − 5y2, we can see that they each factorise into (x+ y

√
5)(x− y

√
5).

We can now write out the full factorisation of k2 − 5 as∏
i

(xi + yi
√

5)
∏
i

(xi − yi
√

5).

The first product simplifies to α + β
√

5, while the second product becomes
α− β

√
5. Thus, for example,

32302 − 5 = 5.11.29.31.211

= (52 − 5× 22)(42 − 5× 12)(72 − 5× 22)(62 − 5× 12)(162 − 5× 32)

= (5 + 2
√

5)(4 + 1
√

5)(7 + 2
√

5)(6 + 1
√

5)(16 + 3
√

5)×
(5− 2

√
5)(4− 1

√
5)(7− 2

√
5)(6− 1

√
5)(16− 3

√
5)

= 634102 − 5× 283212.
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Now here is the neat trick: if we exchange a set of plus signs in the first
product for the corresponding set of minus signs in the second, the pair of
products becomes (α′

√
5 + β′)(α′

√
5− β′) = k2 − 5. Thus, for example,

32302 − 5 = 5.11.29.31.211

= (5 + 2
√

5)(4 + 1
√

5)(7 + 2
√

5)(6 + 1
√

5)(16 − 3
√

5)×
(5− 2

√
5)(4− 1

√
5)(7− 2

√
5)(6− 1

√
5)(16 + 3

√
5)

= 260302 − 5× 115512

= (5 + 2
√

5)(4 + 1
√

5)(7 + 2
√

5)(6 − 1
√

5)(16 − 3
√

5)×
(5− 2

√
5)(4− 1

√
5)(7− 2

√
5)(6 + 1

√
5)(16 + 3

√
5)

= 120702 − 5× 52012.

The full set of resulting values for t and u are given in Table 1.

t 63410 26030 29050 14150 18070 4270 3610 4130
u 28321 11551 12911 6161 7951 1249 721 1151

t 3230 3250 4610 8510 7690 6790 6170 12070
u 1 161 1471 3521 3121 2671 2351 5201

Table 1: Possible values for (t, u) when k = 3230

A computer search tells us that these are not the only possibilities. It
seems that predicting the number of solutions for (t, u) from the starting k
is not an exact science, but we can certainly say that the more prime factors
we have, the more (t, u) pairs we are likely to find.

So one thing remains: can we always find a value for k such that k2−5 has
arbitrarily many prime factors? There is a helpful identity here: two inte-
gers of the form x2−5y2 always multiply to an integer of the same shape, since

(x21 − 5y21)(x22 − 5y22) = (x1 + y1
√

5)(x2 + y2
√

5)(x1 − y1
√

5)(x2 − y2
√

5)

≡ (x1x2 + 5y1y2)
2 − 5(x1y2 + x2y1)

2.
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Given this, we can multiply together arbitrarily many distinct odd prime
factors, say p1, p2, . . . , pm, each of the form x2 − 5y2 (primes ending in 1
or 9) to give a number of the form X2 − 5Y 2. So we have X2 − 5Y 2 ≡ 0
mod p1p2 . . . pm, and so X2 ≡ 5Y 2 mod p1p2 . . . pm, and so (XY −1)2 ≡ 5
mod p1p2 . . . pm, and p1p2 . . . pm|((XY −1)2 − 5). (We know that Y −1 exists,
since gcd(Y, p1p2 . . . pm) is 1, because if pi|Y, then pi|X, and p2i |X2 − 5Y 2,
which contradicts the fact that the pi are distinct.) Thus we have a number
of the form k2−5 that has arbitrarily many prime factors of the desired form,
which lends support to (but does not prove) Conjecture 0.2.

I hope this method deserves wider attention.
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