
Lopsided Numbers 

 

I was discussing inversion with my students the other day, the transformation that takes (r, ) to (
r

1
, ) 

in polar coordinates.  

 

“Think of these points as being best friends,” I said whimsically, “On the understanding that your best 

friend‟s best friend will be yourself.” 

 

“Aren‟t there such things as friendly numbers?” asked Daniel, a bright student who reads around the 

subject. The number 284 came into my mind, and a visit to Wikipedia revealed why – 284 and 220 are 

amicable numbers.  

 

“What does that mean?” Tilly asked.  

 

“Define (n) as the sum of all the divisors of n, including 1 and n, and ‟(n) as the sum of all the 

proper divisors of n, that is, not including n,” I replied. “Now ‟(284) = 220, while ‟(220) = 284.”  

The website Wikipedia (see reference 1) obligingly told us further that a friendly number was 

something different. 
n

n)(
takes a range of values as n varies. If 

m

m)(
=

n

n)(
, then n and m are 

friends, and are thus both friendly numbers. If 
n

n)(
 for some n takes a value that is unique, then n is a 

solitary number. It turns out that all primes are solitary (proving this is included in this issue‟s 

Problems section).  

[It is worthwhile mentioning that (n) is a multiplicative function – that is, if n and m have no common 

factor, then (nm) = (n) (m).]  

Alongside this information, Wikipedia helpfully offered a large box of further definitions: hyper-

perfect numbers, practical numbers, weird numbers, sublime numbers, frugal numbers and so on. This 

much was immediately clear - some hypotheses that are extremely simple to state remain unresolved in 

this area. Is there an odd perfect number (a perfect number is one where ‟(n) = n, for example 6, 28, 

496…)? Is 10 a solitary number? How many sublime numbers are there? (A sublime number is one 

which has a perfect number of positive divisors (including itself), and whose positive divisors add up to 

another perfect number. The number 12, for example, is a sublime number. It has a perfect number of 

positive divisors (6): 1, 2, 3, 4, 6, and 12, and the sum of these is again a perfect number: 1 + 2 + 3 + 4 

+ 6 + 12 = 28. There are only two known sublime numbers, 12 and 

6086555670238378 989670371734243169622657830773351885970528324860512791691264. 

 

Readers are invited to check this!)  

 

Tilly had been thinking. “(n) is always bigger than n, while ‟(n) can be less than, or equal to, or 

greater than n,” she said. “Can you find a pair of numbers n and m, with n less than m, so that: 

 

(n) = m and ‟(m) = n?” 

 



We looked at this for a moment, and couldn‟t see any good reason why such a pair of numbers should 

not exist. Pete, my Head of Department scratched his head when presented with the problem later; 

“They would be lopsided numbers, then.”  

 

So we seek a pair, (n,  (n)) so that ‟((n)) = n. Playing with small numbers, we found that such pairs 

are certainly possible.  

(3) = 4 and ‟(4) = 3, so (3, 4) is a lopsided pair. 

 

(7) = 8 and ‟(8) = 7, so (7, 8) is a lopsided pair. 

 

Is (2
k
-1, 2

k
) always a lopsided pair? No, since (15) = 24 and ‟(24) = 36. 

 

What if 2
k
 -1 is prime? Now (2

k
-1) = 2

k
 and ‟(2

k
) = 1 + 2 + 4 …+ 2

k-1 
= 2

k
-1. 

 

So (2
k
-1, 2

k
) is a lopsided pair if 2

k
-1 is prime (such primes are called Mersenne primes). 

 

Our question now becomes, are there any lopsided pairs that are not of this form? At this point, a 

simple Excel program provides us with a lot of help. It reveals no lopsided pairs (n, m) that are not of 

the above form (for n up to50 000.) It does, however, supply us with some near misses. 

 

(18) = 39 and ‟(39) = 17, so (18, 39) is almost a lopsided pair. 

 

(242) = 399 and ‟(399) = 241, so (242, 399) is almost a lopsided pair. 

 

‟(94) = 50 and (50) = 93, so (50, 94) is almost a lopsided pair. 

 

‟(2457) = 2023 and (2023) = 2456, so (2023, 2457) is almost a lopsided pair. 

 

Notice there is a „falling one short‟ each time – it makes sense to call these „almost lopsided numbers‟, 

since „almost perfect numbers‟ are those where (n) = 2n – 1.  

 

If (n) = 2n + 1, then n is called quasiperfect, but no such numbers have been discovered thus far. My 

Excel program revealed no „quasilopsided‟ pairs for n under 50 000. Why should it be so much easier 

to fall short by 1 rather than to overreach by 1? 

 

So our unproven conjecture remains as follows; 

 

(n, m) is a lopsided pair  (n, m) is of the form (2
k
-1, 2

k
) where 2

k
-1 is prime. 

 

This may be no easier to prove than any of the other conjectures in the field, but MS readers are invited 

to try.  

Jonny Griffiths, July 2008 
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