Nomo Triples

Dr Hugh Hunt of Cambridge University presented this lovely question at Maths Jam 2010.

Figure 1: The 'no motion' problem

Imagine the system above released from rest
with integer masses x, y and z (in kilograms), where $x<y$.
Pulleys are smooth and light, strings are light and inextensible. If z remains stationary, what values are possible for (x, y, z) ?

Let T be the tension in the string attached to z (in newtons), t be the tension in the string connecting x and y (in newtons), and a the acceleration of x and y (in m per s^{2}). Then

$$
y g-t=y a \text { and } t-x g=x a, \text { so } a=g \frac{y-x}{x+y} \text { and } t=x g+x g \frac{y-x}{x+y} .
$$

We also have $T=2 t$ and $T=z g$, so $z=\frac{2 t}{g}=2 x\left(1+\frac{y-x}{x+y}\right)=\frac{4 x y}{x+y}$.

Note that T and so t and a remain constant over time. Our solutions, if you like, define a new integer triple, $\left(x, y, \frac{4 x y}{x+y}\right)$ with $x<y$. I've called this a Nomo Triple (hereafter called an NT), since it arises from our 'no motion' question. The ordering here is that x must be the smallest element of the triple, since $\frac{4 x y}{x+y}-x=\frac{3 x y-x^{2}}{x+y}>0$, but $y<\frac{4 x y}{x+y}$ and $y>\frac{4 x y}{x+y}$ are both possible, since $(3,6,8)$ and $(2,14,7)$ are both NTs (there is also the special case $(k, 3 k, 3 k)$ where $\left.y=\frac{4 x y}{x+y}\right)$.

Figure 2: Early NTs
How many NTs are there? It is easy to search with a computer, and the answer is that they are not rare. The early ones are shown in Figure 2. Note that

$$
(x, y, z) \text { is an NT } \Leftrightarrow z=\frac{4 x y}{x+y} \Leftrightarrow z k=\frac{4 x y k^{2}}{k x+k y} \Leftrightarrow(k x, k y, k z) \text { is an NT, }
$$

hence the NTs lying on straight lines through the origin in Figure 2. We can thus define a primitive NT (x, y, z) to be one where $\operatorname{gcd}(x, y, z)=1$. The first few primitive NTs are given in Table 1, ordered by their sum.

x	y	z	$x+y+z$
1	3	3	7
3	6	8	17
2	14	7	23
3	15	10	28
6	10	15	31
5	20	16	41
3	33	11	47
10	15	24	49
5	45	18	68
15	21	35	71

Table 1: Early NTs ordered by sum

Can we find a parametrisation for primitive NTs, akin to that for primitive Pythagorean Triples? Finding one that yields all primitive NTs and only primitive NTs would seem to ask a lot, but one where we account for all primitive NTs, with as few as possible non-primitive NTs included, seems much more possible.

Asking Excel to chart the first few primitive NTs yields Figure 3. Careful pattern-spotting yields the following pair of parametrisations for these:

Type 1: $\left(\frac{n(n+2 m-1)}{2}, \frac{(n+2 m-1)(n+4 m-2)}{2}, n(n+4 m-2)\right)$.
Type 2: $((2 a-1)(2 a+2 b-1),(2 a+2 b-1)(2 a+4 b-1), 2(2 a+4 b-1)(2 a-1))$
where n, m, a and b are positive integers. It is easily checked that these both always give NTs. In Figure 3 the Type 1 family is shown by filled

Figure 3: Early primitive NTs
squares and the Type 2 family by empty boxes. Putting $x=\frac{n(n+2 m-1)}{2}$, finding m and substituting into $y=\frac{(n+2 m-1)(n+4 m-2)}{2}$ gives $y=\frac{4}{n^{2}} x^{2}-x$, while putting $x=(2 a-1)(2 a+2 b-1)$, finding b and substituting into $y=(2 a+2 b-1)(2 a+4 b-1)$ gives $y=\frac{2}{(2 a-1)^{2}} x^{2}-x$. We thus have two families of parabolas on which the primitive HTs lie. In Figure 4 the Type 1 parabola families are shown in solid lines, the Type 2 ones are shown as dashed lines, while the squares represent the small primitive NTs (which are points on the parabolas with natural number coordinates).

I conjecture that all primitive NTs are included in these parametrisations (along with some that are not primitive). A computer check for primitive NTs where x and y are less than 5000 supports this hypothesis. The set of Type 1 NTs and the set of Type 2 NTs are disjoint, since $\frac{2}{(2 a-1)^{2}}=\frac{4}{n^{2}}$ yields

Figure 4: Type 1 and Type 2 parabolas
$n=-\sqrt{2}(2 a-1)$ or $n=\sqrt{2}(2 a-1)$, which is impossible.
Jonny Griffiths, mail@jonny-griffiths.net, Department of Mathematics, Paston College, Norfolk, UK, October 2011

