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‘My credibility is not on the line.’ President Barack Obama, 4-9-13

In two dimensions, let us define a line L0 = 0 not through the origin, where
L0 = ax+by+c, c 6= 0. Now choose a point R = (p, q) with p 6= 0, q 6= 0, that
does NOT lie on L0 = 0. We will also insist that ap 6= bq, for reasons that
will become clear. We can define a transformation T as follows: suppose R
DOES lie on each of the the three lines a′x+ by+ c = 0, ax+ b′y+ c = 0 and
ax + by + c′ = 0. Now define the line L1 = 0 as a′x + b′y + c′ = 0. We will
say that the transformation T , mapping lines to lines in the x − y plane, is
defined by T (L0) = L1, and we can define Ln = T n(L0). It is also useful to
define s = ap+ bq + r, where we know s 6= 0.

Theorem 1. The point R does NOT lie on L1 = 0 either.

Proof. We have a′p + bq + c = 0, ap + b′q + c = 0, and ap + bq + c′ = 0.
Adding these gives a′p + b′q + c′ + 2s = 0. Since s 6= 0, we must have
a′p+ b′q + c′ 6= 0.

What is L1 = 0 explicitly? We have a′p + bq + c = 0, and so a′ = −bq−c
p

.

Similarly b′ = −ap−c
q

, and c′ = −ap−bq. Thus L1 is −bq−c
p

x+ −ap−c
q

y−ap−bq,
which is more conveniently written as

bq + c

p
x+

ap+ c

q
y + ap+ bq = 0, (1)

or ap+bq+c
p

x+ ap+bq+c
q

y+ap+bq+c−(ax+by+c) = 0, or s(x
p

+ y
q
+1)−L0 = 0.

Let us put x
p

+ y
q

+ 1 = M , so L0 + L1 = sM . We note that the line M = 0
is independent of a, b, and c.

Given the lines C0 = 0 and C1 = 0, then αC0 + βC1 = 0 either passes
through the intersection point of C0 = 0 and C1 = 0, or is parallel to them
both, so L1 goes through the intersection of L0 = 0 and M = 0, which we
shall call Z.

The line L0 = 0 could be written as λax+ λby + λc = 0 for any non-zero
real number λ. In this case, our image line L1 = 0 is
λbq+λc

p
x + λap+λc

q
y + λap + λbq = 0, which on dividing by λ is seen to be

our original L1 = 0, and so T is well-defined.
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Note that by multiplying (1) by pq, we could say that T maps ax+by+c =
0 to the line q(bq+ c)x+ p(ap+ c)y+ap2q+ bpq2 = 0. We could write this as

(
a b c

) 0 p2 p2q
q2 0 pq2

q p 0

xy
1

 = 0,

where the central matrix here has the eigenvalues 2pq and −pq (twice).

What is L2? This is b′q+c′

p
x + a′p+c′

q
y + a′p + b′q, which becomes

(a + ap+bq+c
p

)x + (b + ap+bq+c
q

)y + c + (ap + bq + c), and so L2 = L0 + sM.
Given that sM = L0 + L1, we have L2 = L1 + 2L0, which generalises to

Ln+2 = Ln+1 + 2Ln, n > 0. (2)

Theorem 2. The lines L0 = 0, L1 = 0, L2 = 0, L3 = 0, ... are concurrent.

Proof. From (2), each line Ln passes through the intersection of the previous
pair, and so all are concurrent or parallel. This point is Z: solving L0 = 0

and M = 0 simultaneously gives Z =
(
p(bq−c)
ap−bq ,

q(c−ap)
ap−bq

)
. This is the reason

for excluding the case ap = bq; here L0 = 0 and L1 = 0, and indeed Ln = 0
for all n, are parallel to M = 0.

Theorem 3. The transformation T maps M = 0 to itself, and M = 0 is the
only line for which this is true.

Proof. We have L0 + L1 = sM , and so if L0 = k0M for some constant k0,
then L1 = k1M . Also if L1 = kL0, then (k + 1)L0 = sM , and L0 = 0 is the
line M = 0.

Can we find Ln explicitly? Let us define jn to be the nth Jacobsthal
number, as given by jn = jn−1 + 2jn−2, j0 = 0, j1 = 1, (see OEIS A001045
starting 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341,...).

Theorem 4. The line Ln is jnsM + (−1)nL0 = 0.

Proof. Our assertion is true for n = 0. Suppose it is true for some n > 0.
The line Ln can therefore be written as(

jns

p
+ (−1)na

)
x+

(
jns

q
+ (−1)nb

)
y + jns+ (−1)nc = 0,
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Using (1), the line Ln+1 is therefore

2jns+ (−1)nbq + (−1)nc

p
x+

2jns+ (−1)nap+ (−1)nc

q
y

+2jns+ (−1)nap+ (−1)nbq = 0,

which is

(2jn + (−1)n)s− (−1)nap

p
x+

(2jn + (−1)n)s− (−1)nbq

q
y

+(2jn + (−1)n)s− (−1)nc = 0.

We note that the number jn is given by 2n−(−1)n
3

, and so 2jn + (−1)n = jn+1.
So our equation becomes

jn+1s

(
x

p
+
y

q
+ 1

)
+ (−1)n+1(ax+ by + c) = 0,

and so by induction the proof is complete. We see clearly again that Ln will
always go through the intersection point Z of L0 = 0 and M = 0.

As an alternative proof, we can examine the recurrence relation (2).

Proof. The auxiliary equation is λ2 − λ − 2 = 0, so λ = 2 or −1, and
Ln = A(2)n +B(−1)n. Now from (2),

Ln+2 + Ln+1 = 2(Ln+1 + Ln) . . . = 2n+1(L1 + L0) = 2n+1sM.

Now Ln+2 + Ln+1 = A2n+2 + B(−1)n+2 + A2n+1 + B(−1)n+1 = 2n+1(3A).
Thus 2n+1(3A) = 2n+1sM, and A = sM

3
. Now L1 = 2A−B = sM − L0, and

so B = L0 − sM
3
. So we have

Ln = (−1)n(ax+ by + c) +
2n − (−1)n

3
sM = (−1)n(ax+ by + c) + jnsM,

as before.

The gradient of Ln = 0 is (− q
p
) jns+(−1)nap
jns+(−1)nbq . Since jn tends swiftly to infin-

ity, this tends swiftly to − q
p
, or the gradient of M . So we now have a clear

picture of what happens as we apply the transformation T repeatedly to a
line L0 = 0. The point R is NOT on the line M = 0, but the point (−p

2
,− q

2
)
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Figure 1: The transformation T

is. The gradient of the line joining these two points is q
p
, while the gradient

of M is − q
p
. Thus we have the red lines in Figure 1, with x = −p

2
as a line

of symmetry.

The line L0 = 0 crosses the line M = 0 at Z, as do all the image lines
Ln = 0. The lines Ln = 0 converge on the line M = 0 as n increases, oscillat-
ing about it as they do. The exceptional case is when L0 = 0 and M = 0 are
parallel, but here too the image lines Ln = 0 (all parallel to M = 0) converge
on M = 0.

Unconventionally, we began here with a transformation T mapping lines
to lines (the more usual approach would be to define how a transformation
mapped points, and move on to lines from there). If intersection points map
to intersection points for our transformation T , then starting with the non-
parallel lines a1x+ b1y+ c1 = 0 and a2x+ b2y+ c2 = 0, we find these meet at

(X, Y ) =
(
b1c2−b2c1
a1b2−a2b1 ,

a2c1−a1c2
a1b2−a2b1

)
. The two lines map to

(b1q + c1)
x

p
+ (a1p+ c1)

y

q
+ a1p+ b1q = 0
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and
(b2q + c2)

x

p
+ (a2p+ c2)

y

q
+ a2p+ b2q = 0,

and these meet at (X ′, Y ′). It is now possible to eliminate ai, bi and ci to
give

(X ′, Y ′) =

(
−pqX + p2Y + p2q

qX + pY − pq
,
q2X − pqY + pq2

qX + pY − pq

)
.

This is a projective transformation, since it is of the form

(X ′, Y ′) =

(
αX + βY + γ

δX + εY + φ
,
θX + χY + ν

δX + εY + φ

)
.

We can note that the point (p, q) is invariant under this transformation,
and so is any point on the line M = 0. Fixing just one more point fixes the
whole plane.

There are many ways that this investigation could be extended – we could,
for example, work in three dimensions. Take a point (p, q, r) that is NOT on
the plane ax + by + cz + d = 0, and so on; in this case the central matrix
that emerges has eigenvalues 3pqr and −pqr (three times). A simple question
accessible to A Level students is this one:

1. Suppose the point (p, q) is INSIDE the circle (x− a)2 + (y − b)2 = r2.

2. The point (p, q) is ON the three circles (x − a′)2 + (y − b)2 = r2,
(x − a)2 + (y − b′)2 = r2 and (x − a)2 + (y − b)2 = r′2, where a′ < a,
b′ < b, r′ < r.

3. Show (p, q) is OUTSIDE the circle (x− a′)2 + (y − b′)2 = r′2.

With thanks to John Mason, Bob Burn, and everyone who worked on
this problem at BCME8. My thanks also goes to the referee for his full and
helpful comments.
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