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Could ππππ be three?   Jonny Griffiths 
 
How does my title arise? As many readers will know, there are one or two verses in the Bible that 
seem to indicate that the value of π, understood as the circumference of a circle divided by its 
diameter, is 3 exactly. (For an illuminating discussion on this, see Deakin and Lausch [1].)  
 

"And he made a molten sea, ten cubits from the one brim to the other: 
it was round all about, […] and a line of thirty cubits did compass it round about." [2] 

 
This describes King Solomon building the Temple in Jerusalem. In playful moments, I have tried to 
imagine a world in which these words might be literally true, and not just an approximation to the 
truth. Maybe Solomon, who was alive long before Euclid, was using a different metric to the 
Euclidean one, and maybe with a little effort his alternative geometry might be reconstructed. Let us 
start by giving our usual Euclidean π the name πE , and rename π appropriately in other geometries 
as we go.  
 
What would be the easiest alternative geometry that we could begin with? We might turn to 
spherical geometry, where points are points on the surface of a sphere, and distance is measured on 
the surface of the sphere. A circle in this geometry is the set of points on the surface of the sphere 
equidistant from one point on the surface: in other words, a circle in this geometry looks just like a 
circle in Euclidean geometry. So what will πS be? Take a circle of radius r (measured in this new 
geometry) subtending an angle 2xc at the centre of the sphere. 

 
Then r = Rx, and the circumference of the circle is 2 πE R sin x, which gives: 

 

So πS varies with x. When x = 0, then πS = πE, and when x = 
2
Eπ

, πS = 2. πS can take any value 

between these extremes. Of especial interest to us is the fact that when x = 
6
Eπ

, then πS = 3. So we 

have our Euclidean geometry where π is constant, and now another where π is 3 at least some of the 
time. In the light of this, a geometry where π is constant at 3 seems more possible, perhaps. 
 
Euclidean geometry arises from saying that there is just one line through a point parallel to a line 
not through that point. Spherical geometry says there are no lines through a point parallel to a given 
line not through the point. So what of hyperbolic geometry (sometimes called Non-Euclidean 
geometry, a little unhelpfully, since there are many Non-Euclidean geometries), the geometry that 
arises from saying that there are infinitely many lines parallel to a line through a given point not on 
that line? What is π there? Fortunately there is a marvellous website that allows us to explore 
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hyperbolic geometry, based at The University of New Mexico and run by Joel Castellanos. (The 
address is: http://cs.unm.edu/~joel/NonEuclid/NonEuclid.html) Here we can draw hyperbolic 
circles, and see roughly what their circumferences are, and measure their diameters. It is easy to see 
from experimenting that for this geometry, πE < πH < ∞, apparently little help in our search for a 
system where π is three. 
 
The idea of distance used in this last geometric world is quite complicated. To be exact, if two 
points (seen as complex numbers inside the unit circle) are z1 and z2, then: 

 
What makes this satisfactory as a distance measure? What should we insist upon in our definition of 
distance, and are there any restrictions that we should impose? The classic definition of a distance 
function (or metric) d is that: 
 
d(z1, z2) ≥ 0 (any distance is non-negative)  
d(z1, z2) = 0 ⇔ z1 = z2 (the distance from A to B is zero iff A = B) 
d(z1, z2) = d(z2, z1) (the distance from A to B is the distance from B to A)    
d(z1, z2) + d(z2, z3) ≥ d(z1, z3) (the distance from A to C via B ≥≥≥≥ the direct distance from A to C) 
 
These all seem to be reasonable things to request. So what other ideas of distance, apart from the 
three that we have met so far, fit these criteria? There are two in particular that might be useful to 
us. 
 
1. The Manhattan metric (here called dM)…imagine you are in New York, and you can only 
travel from A to B by moving along gridlines. Cutting corners is not allowed. More formally, the 
distance from (a , b) to (c , d) is a−c +b−d, where a, b, c and d can take any real values. 
 
2. The Chessboard metric (here called dC)…imagine you are on a large chessboard, and two 
rooks are placed upon it. The distance from one rook to the other is the length of the single move 
required to bring them as close together as possible. More formally, the distance from (a , b) to  
(c , d) is the larger of a − c and b − d, where again, a, b, c and d can take any real values. 
 
So what might πM and πC be?  We can draw a unit circle, centre the origin, for each of these 
metrics. The Manhattan metric leads to a 'square' (figure 1), with corners at (1,0), (0,1), (-1,0), and 
(0,-1). 
 
 
 

 
 

 
 

What is the circumference C of this 'circle'? (Incidentally, try telling students that this is a circle!) 
Continuing to use this metric, clearly C = 8, whilst the diameter is 2. (A diameter is defined as a 
straight line connecting two points on the circle that is maximal in length. In Euclidean geometry, 
there is a unique straight line between two points, but not so here: there can be many diameters 
connecting two suitable points on the circle, but they will all be of length 2.) Thus πM = 4, and it is 
not too hard to see that this will be the value of πM for any circle in this geometry. 
 

fig.1 fig.2  
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The Chessboard metric also gives a 'square' (figure 2) as the unit circle, centre the origin, but the 
corners here are (1,1), (-1,1), (-1,-1) and (1,-1). Once again, using this metric gives a side length of 
2, a circumference of 8, and a diameter of 2. (Again, there are many diameters connecting two 
suitable points on opposite sides of the circle, all of length 2.) So πC = 4, for all circles in the 
system. If Solomon had given ten and forty as his measurements, we would not know which 
geometry he might have been using. 
 
If dA and dB are metrics, then adA + bdB will be a metric too. (This is easy to verify from our 
definition of a metric.) So what happens if we take say, adM + (1−a)dC as our metric, with 0 < a < 1? 
(Call this dMCa.) We might think that since both πM and πC are 4, then πMCa must equal 4 too, yet not 
so. What does the unit circle centre the origin look like with this new metric? (Choosing (1−a) as 
the second coefficient ensures that the circle goes through (1,0)). 

 
Take a point (x , y) on the circle in the first quadrant with x > y. 

1 = a(x + y) + (1−a) x ⇒ y = 
a
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Putting this equal to 3 gives 4a2 – 3a + 1 = 0, which has imaginary roots: still no joy! So what is the 
smallest that πMCa can be here? It turns out that the minimum occurs when a = 0.417… giving  
πMCa = 3.31…, closer to 3 than πM or πC, but still not close enough. 
 
However, we’ve not come out of this with nothing. For if we could find a metric where π is 
constant and less than three, it seems we might be able to find a linear combination of that metric 
with another to give one where π is always three.  
 
Maybe to get π to be always 3 we need to think differently. Consider the following finite geometry: 
 
Take the four numbers, 5, 6, 12, and 15 as our points. In binary these are 0101, 0110, 1100, and 
1111. So if the distance apart of two points is the number of digits where they disagree, then any of 
these numbers is 2 away from any other. Picking any of these numbers as a centre, and choosing 
radius 2, we find the other three numbers to be on the resulting 'circle'. If 'circumference' is defined 
as the length of the minimal loop that connects the points on the 'circle', then I have a circumference 
of 2 + 2 + 2 = 6. 'Diameter' still means the maximal distance between two points on the circle, and 

that is 2.  π = 
D

C
 = 

2

6
 = 3. This holds for all four 'circles' in the system. Does our definition of 

distance here (called the Hamming distance, after its inventor) obey our rules for a metric? Happily, 
it does. 

What if we take more than four points? If we have n points, then there will be 
2

)1( −nn
connecting 

lines, of various lengths. If we assume that these split into the kind of circles that we have above, 

each with six arcs, then 6
2

)1( −nn
. But also, each point will be attached to three others for each of 

these circles. So 3(n−1). This gives 13 as the smallest value for n > 4 that might work, and we 
have the conjecture: 



 4

 
There is a geometry of thirteen numbers, that includes circles with thirteen different radii, 

 such that every circle in the system has a value for π of three. 
 
If this is true, the numbers will be huge! 
 

Jonny Griffiths, Paston College, Norfolk,  
 

jonny.griffiths@paston.ac.uk 
 

www.jonny-griffiths.net 
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