Could 1tbethree? Jonny Griffiths

How does my title arise? As many readers will kndweyé are one or two verses in the Bible that
seem to indicate that the valuempfunderstood as the circumference of a circle dividedsby i
diameter, is 3 exactly. (For an illuminating discussiorthis, see Deakin and Lausch [1].)

"And he made a molten sea, ten cubits from the one brim to the other:
it was round all about, [...] and a line of thirty cubits did compassund about.'[2]

This describes King Solomon building the Temple in Jerusdle playful moments, | have tried to
imagine a world in which these words might be litertdiye, and not just an approximation to the
truth. Maybe Solomon, who was alive long before Euedids using a different metric to the
Euclidean one, and maybe with a little effort his alé¢ive geometry might be reconstructed. Let us
start by giving our usual Euclidearthe namate, and rename appropriately in other geometries
as we go.

What would be the easiest alternative geometry thadout begin with? We might turn to
spherical geometry, where points are points on the suofba sphere, and distance is measured on
the surface of the sphere. A circle in this geometithe set of points on the surface of the sphere
equidistant from one point on the surface: in otherdspa circle in this geometry looks just like a
circle in Euclidean geometry. So what wi be? Take a circle of radius r (measured in this new
geometry) subtending an angl€e® 2k the centre of the sphere.

Then r = Rx, and the circumference of the circl2 1& R sin x, which gives:
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Sortvaries with x. When x = 0, them = 1, and when x % Tis = 2.Ts can take any value

between these extremes. Of especial interest tothe fact that when x =7:3—E thents = 3. So we

have our Euclidean geometry wheres constant, and now another whars 3 at least some of the
time. In the light of this, a geometry whetes constant at 3 seems more possible, perhaps.

Euclidean geometry arises from saying that there ioestine through a point parallel to a line
not through that point. Spherical geometry says ther@@ lines through a point parallel to a given
line not through the point. So what of hyperbolic geoyngtometimes called Non-Euclidean
geometry, a little unhelpfully, since there are many{Roclidean geometries), the geometry that
arises from saying that there are infinitely many lipaallel to a line through a given point not on
that line? What ist there? Fortunately there is a marvellous websitedll@avs us to explore
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hyperbolic geometry, based at The University of New Mexiad run by Joel Castellanos. (The
address ishttp://cs.unm.edu/~joel/NonEuclid/NonEuclid.httBre we can draw hyperbolic

circles, and see roughly what their circumferencesaar@ measure their diameters. It is easy to see
from experimenting that for this geometryg < 1y < 0, apparently little help in our search for a
system whereat s three.

The idea of distance used in this last geometric woddiiie complicated. To be exact, if two
points (seen as complex numbers inside the unit ciacée} and z, then:

d(z,,2,)=tanh ( )

What makes this satisfactory as a distance measura?3hbuld we insist upon in our definition of
distance, and are there any restrictions that we shmoplolse? The classic definition of a distance
function (or metric) d is that:
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d(z, z) = 0 (any distance is non-negative)

d(z1, ) =0 = z; = % (thedistancefrom A to B iszero iff A = B)

d(z, ) = d(z, z) (thedistance from A to B isthedistancefrom B to A)

d(z1, ) + d(z, z) = d(z, z) (thedistancefrom A to C viaB = thedirect distance from A to C)

These all seem to be reasonable things to request. Sothibaideas of distance, apart from the
three that we have met so far, fit these critefia€re are two in particular that might be useful to
us.

1. TheManhattan metric (herecalled dyu)...imagine you are in New York, and you can only
travel from A to B by moving along gridlines. Cutting cornisraot allowed. More formally, the
distance from (a , b) to (c, d)i&——cl +[b—d[J, where a, b, ¢ and d can take any real values.

2. The Chessboard metric (here called d¢)...imagine you are on a large chessboard, and two
rooks are placed upon it. The distance from one rook tottter is the length of the single move
required to bring them as close together as possible. fdiomally, the distance from (a , b) to

(c, d) is the larger dfla— cldand[b — dJ, where again, a, b, ¢c and d can take any real values.

So what mighty andrc be? We can draw a unit circle, centre the origingéch of these
metrics. The Manhattan metric leads to a 'square’ (fijyreith corners at (1,0), (0,1), (-1,0), and
(0,-1).
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What is the circumference C of this 'circle'? (Inciddly, try telling students that this is a circle!)
Continuing to use this metric, clearly C = 8, whilst tlieemeter is 2. (A diameter is defined as a
straight line connecting two points on the circle thahaximal in length. In Euclidean geometry,
there is a unique straight line between two points, busadiere: there can be many diameters
connecting two suitable points on the circle, but thélyall be of length 2.) Thuswy = 4, and it is
not too hard to see that this will be the valueggfor any circle in this geometry.




3

The Chessboard metric also gives a 'square’ (figuretBeasmit circle, centre the origin, but the
corners here are (1,1), (-1,1), (-1,-1) and (1,-1). Ogeéausing this metric gives a side length of
2, a circumference of 8, and a diameter of 2. (Agaimethee many diameters connecting two
suitable points on opposite sides of the circle, faktiogth 2.) Satc = 4, for all circles in the
system. If Solomon had given ten and forty as his aoreasents, we would not know which
geometry he might have been using.

If da and @ are metrics, then adt bds will be a metric too. (This is easy to verify fromro
definition of a metric.) So what happens if we take ady,+ (1-a)d: as our metric, with 0 <a < 1?
(Call this dica.) We might think that since botly andric are 4, themyca must equal 4 too, yet not
so. What does the unit circle centre the origin look ki this new metric? (Choosing-a) as

the second coefficient ensures that the circle goesgh (1,0)).

Take a point (x, y) on the circle in the first quadnamh x > vy.

1 =a(x +Y) + (a) x :y:M:whenx:y,x:y{ij
a l1+a

= the straight line from (1,0) téﬁ,ﬁj Is part of the circle. Thus the circle is an octag

. . 1 1 1 _a’+1
(not a regular one), with each side length —a—+1- + (1-a) | — |, that is, :
l1+a l+a 1+a a+l

2

2
which gives a circumference of (Mj . The diameter is still always 2, 9ca = 4 (a +1j :

a+l a+l
Putting this equal to 3 gives%4a 3a + 1 = 0, which has imaginary roots: stilljmgl So what is the
smallest thatica can be here? It turns out that the minimum oceadmsn a = 0.417... giving
Tiuca = 3.31..., closer to 3 tham, or i, but still not close enough.

However, we've not come out of this with nothingr i we could find a metric whemeis
constant and less than three, it seems we migableeto find a linear combination of that metric
with another to give one whereis always three.

Maybe to gettto be always 3 we need to think differently. Cdesithe following finite geometry:

Take the four numbers, 5, 6, 12, and 15 as outgdimbinary these are 0101, 0110, 1100, and
1111. So if the distance apart of two points isrthmber of digits where they disagree, then any of
these numbers is 2 away from any other. Pickingddilgese numbers as a centre, and choosing
radius 2, we find the other three numbers to bthemesulting 'circle’. If ‘circumference’ is defth

as the length of the minimal loop that connectspiiats on the ‘circle’, then | have a circumfeeenc
of 2 + 2 + 2 = 6. 'Diameter’ still means the maxidhatance between two points on the circle, and

thatis 2.1t= % = g = 3. This holds for all four ‘circles' in the sgnst. Does our definition of

distance here (called the Hamming distance, @ikenventor) obey our rules for a metric? Happily,
it does.

What if we take more than four points? If we haysomts, then there will bg% connecting
lines, of various lengths. If we assume that tisgdié into the kind of circles that we have above,
each with six arcs, therﬂep(nzi_l). But also, each point will be attached to thrdees for each of

these circles. SolEn—-1). This gives 13 as the smallest value for n hat might work, and we
have the conjecture:



There is a geometry of thirteen numbers, that includes circtesthwteen different radii,
such that every circle in the system has a valua tirthree.

If this is true, the numbers will be huge!
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