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Pineapple Triangles 

 
 

Jonny Griffiths documents a mathematical 

collaboration between himself and Derek Ball. 
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It all started, like so many beautiful things, over lunch at the Association of Teachers of Mathematics 

conference. Derek and I had been discussing the skills required to be a stand-up comic, when the 

conversation somehow turned back to mathematics. “Did you know,” Derek asked, “That if you take a 

triangle that includes the angles a and 2a, the sides obey a law close to Pythagoras?” This was news to me, 

and I filed it away under „Investigate later,‟ a file that is always bulging as conference draws to a close. 

Once I‟d trekked back home, I tried for myself. 

 

Fig. 1 

I could see that by the Sin Rule, the sides (x, y, z) would be 
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sin a : sin 2a : sin 3a, but how could this be related to anything like Pythagoras? I emailed Derek urgently. 

“Try similar triangles; trig is not required!” was all the hint I was offered. It was, fortunately, all I needed. 

 

Fig. 2 

The triangles with sides (x, y, z) and (q, x, p) are similar here, which gives: 
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= x

2
 + xz (1) 

Close to Pythagoras indeed! But I was left wondering, what next? Derek told me there were plenty of integer 

values that fitted equation (1); would the same be true for a triangle containing angles a, and 3a?  

a and 4a? How about an a, na triangle?  

„This looks worryingly close to “banana”,‟ I said to Derek.  

„It‟s nearer to “ananas” – let‟s call these “pineapple triangles”,‟ he replied. So we did.  

Now I confess, I have no guilt over turning to a computer here - Excel is an awesome program, that devours 

this type of search problem. But I needed a way to connect together the sides for an a, na triangle.  
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Fig. 3 

Again we have a pair of similar triangles here, which give; 
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So y
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 + xz turns into y2
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 + x2z, and substituting in we get 
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Repeating the process gives an even nastier connection between x4, 

y4 and z – not nasty enough to defeat Excel completely, however, which yielded results with a search 

program that included these;  

(a, 2a) pineapple triangles (a, 3a) triangles 

x y z x y z 

4 6 5 8 10 3 
9 12 7 27 48 35 
9 15 16 64 132 119 

16 20 9 125 195 112 
16 28 33 184 230 69 
25 30 11 125 280 279 
25 35 24 232 290 87 
25 40 39 248 310 93 

36 42 13 343 357 20 
25 45 56 296 370 111 
49 56 15 328 410 123 

49 63 32 344 430 129 

36 66 85 (a, 4a)  triangles  

49 70 51 x y z 

64 72 17 81 105 31 

64 104 105 256 476 305 

Table 1 
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I was trying to collect here examples that I called „primitive‟, where x, y and z had no common factor. 

(Clearly a triangle with sides x, y and z is an (a, na) triangle, if and only if a triangle with sides kx, ky, and kz 

is one.)  Certainly there were plenty of primitive (a, 2a) pineapple triangles, but it got harder to find 

primitive (a, na) examples the larger n became. Another curiosity; for (a, 2a) triangles, x seemed to be a 

square almost all of the time, while for (a, 3a) triangles, x was more often than not a perfect cube, and so on. 

Sadly, the pattern did not seem to work consistently; but then Derek pointed out, „Not all your examples are 

primitive here!‟ There was a glitch in my programming that had allowed some triangles through with  

gcd(x, y, z) ≠ 1. Once these were removed, the square, cube, and fourth power patterns for side x were 

perfect. I reflected afterwards that given a choice between considering that I might have made an error in my 

program, and ditching a lovely conjecture, I had chosen the latter…   

Now suddenly there was a focus to our work. Our possible theorem became this; 

If a triangle with integer sides (x, y, z) (where x, y, and z have no common factor) contains the angles  a 

and na (where a is a real number and opposite the side x, and where n is a positive integer), then x will 

be of the form k
n
, where k is an integer. 

Derek had worked on parametrising our starting equation (1), discovering that (x, y, z) = (a2, ad, d2 - a2) 

where a and d were positive integers with gcd(a, d) = 1 gave integer solutions.  I pointed out that we needed 

a < d < 2a for this to give three legitimate sides of a triangle, and I had an additional niggle to resolve. 

“Your parametrisation always gives a solution to (1), but does it give them all?” I asked. The following 

elegant argument arrived from Derek;  

Suppose that y2 = x2 + xz, where gcd(x, y, z) = 1. Let gcd(x, y) = c, so x = ac, y = dc, with gcd(a, d) = 1. 
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  which means a |d

2
c, and thus a |c. Say c = ak.

 

So x = a2k, y = adk, and z = (d2 - a2)k, and since k is a factor of x, y and z, k = 1. 

So a complete parametrisation of (1) is (x, y, z) = (a2, ad, d2 – a2). 

How to find parametrisations for larger values of n? Derek had the great idea of reversing my recurrence 

relations (2), to give;  
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So this gave a way to find   –  parametrisations for the higher situations. Put n = 2 and substitute x2 = a2, y2 

= ad, and z2 = d2  –  a2, and the above yields, after removing common factors and fractions; 
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x3 = a
3
, y3 = a(d

2 
–  a

2
), z3 = d(d

2 
–  2a

2
) 

So given that gcd(a, d) = 1, we have x, y and z are integers, gcd(x, y, z) = 1 and y is a perfect cube. Derek 

forged on, during an opportune holiday in the Lakes, to show that for n = 4, y was a perfect fourth power, 

with;   (x4, y4, z4) = (a
4
, d

3
a – 2da

3
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and that for n = 5, y was a perfect fifth power, with; 
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By now, the algebra was proving tiresome, and the baton passed to me, as someone lucky enough to possess 

a copy of the algebraic manipulation package Derive. As Derek paused to look after his grandchildren for a 

week, his final words were these;  

“The polynomials for the parametrisations for x, y and z must fall into a pattern. If we can find this, I reckon 

we can prove by induction that it holds for all n.” 

My week ahead proved to be busy. I started with noticing that the recurrence relation (4) is perhaps best 

written (after removing common factors and fractions);  

xn+1 = xnyn, yn+1 = ynzn, zn+1 = zn
2
- xn

2 
(5) 

My conjecture was that our parametrisation would always look like the following: 

xn = a
n
, yn = azn-1, zn = Pn(d, a), 

where Pn(d, a) is the polynomial sequence we had to determine. (Certainly pattern-spotting confirmed this 

for n = 1 to 9.) If this was correct, then the inductive step using (5) would become; 

xn+1 = a
n
(azn-1), yn+1 = (azn-1)zn, zn+1 = (Pn(d, a))

2
- a

2n 
= zn-1 Pn+1(d, a) 

whereupon we could cancel zn-1 to give what we needed. 

Derive made the first few polynomials Pn(d, 1) easy to find using (5) (I decided to leave out the „a‟s, which 

simply made the polynomials homogeneous – it would be no problem to put them back); 
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I turned now to The Encyclopedia of Integer Sequences, the mathematician‟s friend, and certainly a 

candidate for the most useful mathematics website on the Net. Putting in the coefficients of our 

polynomials here gave the following;  

 

 

 

 

  

 

 

 

Fig. 4 

The site pointed me towards the Chebyshev Polynomials of the Second Kind, Un(x), which begin 

like this; 

U0(x) = 1 

U1(x) = 2x 

U2(x) = 4x
2 

- 1 

U3(x) = 8x
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U4(x) = 16x
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U6(x) = 64x
6 

- 80x
4 

+ 24x
2 

- 1 

U7(x) = 128x
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8 
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U9(x) = 512x
9 
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5 
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Table 3 

Now we can see by inspection that the polynomials Pn(d, 1) we have above in Table 2 are .
2
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How is Un(x) defined? As follows: 
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In other words, expand sin((n+1)θ) into a polynomial in cos θ and sin θ, then divide by sin θ and then 

replace every cos θ by x - this gives you Un(x). Can we now carry out our induction? The inductive step asks 

us to prove; 

Pn+1(d, a) = 
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And so we have it. A proof of our conjecture; a little rough at the edges maybe, with polishing definitely 

required, but nonetheless, a proof. I preened a little as I posted this off to Derek, who was just about to 

emerge from his long shift as grandfather.  

“Lovely, Jonny!” he said, but his next comment contained a friendly barb. “By the way,” he said innocently, 

“You do realise that the θ you talk about in your proof is the same as the „a‟ in your starting triangle?” 

I felt deflated, crestfallen, even shocked. I went all the way back to my initial thoughts – that the sides would 

be in the ratio sin a : sin 2a : sin 3a. Of course! From Fig. 1, (x, y, z) = 
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(x, xU1(cos a), xU2(cos a)). Cos(a) has to be rational (using the Cos Rule in the triangle shows that.) Say 

cos(a) =  
q

p
with  p and q both integers; in order for (x, xU1(cos(a)), xU2(cos(a))) to all be integers with no 
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common factor, x would have to be a perfect nth power. „The proof becomes a five-liner!‟ I whispered. „All 

that parametrisation – a waste of time!‟
  

I wrote to Derek reflectively. „I take a trig approach and get nowhere, whereupon you point me towards a 

triple using just geometry, then I use a computer, and we start to spot patterns... and some time later, after 

quite a lot of sweat on both sides, we get a solution, which then heads us back to a trig-type solution, that is 

really only a few lines (!) I am not very knowledgeable on poetry, but I like T.S.Eliot's lines; 

”We shall not cease from exploration, and the end of our exploring will be to arrive where we started and to 

know the place for the first time.”  

I am left a little downcast - it is nice to think one has found something new that is not obvious - but then, 

maybe that is the fate of all proofs. Maybe Fermat's Last Theorem will be a fiver-liner in a hundred years' 

time.‟   

In fact, the „putting to bed‟ took a while; my „fiver-liner‟ assessment had been premature. It was as if the 

result did not want to go quietly, an unruly child who was refusing to place his head upon the pillow. I sent 

Derek the following;  

Suppose we take n = 8 and say cos θ = 
30

19
(wild surmise!) Then what will U8(

30

19
) look like? 

The term at the front will be a8

8
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. Certainly multiplying U8(

30
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) by 30

8
 will give an integer. 

BUT… a8 = 2
8
. 

So if we multiply by 30
8
, x, y and z will have a common factor of at least 2. 

So cancel the 2
8
, and multiply instead by 15

8
 (which is still a perfect 8th power.) 

But then consider the next term in the polynomial, a7

7
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. 

So the 15
7
 cancels okay, but we then need to be sure that 2

7
 divides into a7. And so on. 

But eventually the result succumbed. I spotted a helpful identity in Wikipedia;  

Un+1(x) = 2xUn(x) – Un-1(x) 

Derek provided a lightning argument for this; 

sinθ [2cosθUn(cosθ) – Un-1(cosθ)]  =  2cosθsin((n+1)θ) – sin(nθ) 

      = sin(n+2)θ + sin(nθ) – sin(nθ) 

      = sin(n+2) θ. 

 

which allowed him to now finally piece together our definitive Pineapple Triangles proof.  
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Definition 1 

A monic polynomial in x is one whose highest power of x has coefficient 1. 

Definition 2 

Let Vn(x) = Un









2

x
. 

Lemma 

For all n, Vn(x) is a monic polynomial in x with integer coefficients. 

Proof of lemma 

Un+1(x) = 2xUn(x) - Un-1(x), so Vn+1(x) = xVn(x) - Vn-1(x),  
and by induction, we have our result. 

 

 
 

x : y : z = 1 : Un-1(cos a) : Un(cos a) (by the Sin Rule.) 

Replace cos a with 
q

p2
, where p and q have no common factor  

(cos a is rational by the Cos Rule.) 

So, (x, y, z) = (k: kVn-1 








q

p
: kVn 









q

p
),  

and, since Vn-1(x) and Vn(x) are monic polynomials, 

x, y and z are integers with no common factor if, and only if, k = qn. 
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Our work on parametrisation had, of course, not been a waste of time. It enabled us to produce the integer 

triples that give pineapple triangles.  

2. (x, y, z) = (a2, da, d2- a2) 

3. (x, y, z) = (a3, d2a - a3, d3 - 2da2) 

4. (x, y, z) = (a4, d3a - 2da3, d4 - 3d2a2+ a4) 

5. (x, y, z) = (a5, d4a - 3d2a3+ a5,d5- 4d3a2+3da4) 

6. (x, y, z) = (a6, d5a- 4d3a3+3da5,d6-5d4a2+6d2a4- a6) 

7. (x, y, z) = (a7, d6a-5d4a3+6d2a5- a7,d7-6d5a2+10d3a4-4da6) 

8. (x, y, z) = (a8, d7a-6d5a3+10d3a5-4da7,d8-7d6a2+15d4a4-10d2a6+a8) 

9. (x, y, z) = (a9, d8a-7d6a3+15d4a5-10d2a7+a9,d9-8d7a2+21d5a4-20d3a6+5da8) 

Choosing positive integers a and d so that gcd(a, d) = 1 always gives (x, y, z) to be integer sides of a 

pineapple triangle with no common factor (as along as x, y and z form a triangle at all), and moreover, 

Derek’s full arguments show that all such pineapple triangles correspond to some such values of a and d.  

I meant what I said to Derek about Fermat‟s Last Theorem – there is an unproved hypothesis called the ABC 

Conjecture which, if true, reduces the proof of FLT to a few pages. We might begin an educational debate 

here; should one always give the whole story behind a proof, as I have done in this account? To do so is to 

ask a lot of one‟s readers in terms of time – this article is nine pages long, while our final proof is a page. 

But not to do so drains the life out of the conjecture. Teaching that proceeds „Theorem-Proof-Examples‟ is 

in fact reversing the process of discovery, turning live mathematics into dead mathematics. In our exposition 

as teachers, we need to find a happy compromise, simplifying helpfully whilst still conveying the thrill of 

the chase.  

Jonny Griffiths, 22 August 2009 


