The Sifter

Jonny Griffiths, Jan 2013

Consider the curve $y=a x^{2}+b x+c$.
Where does it cross the x-axis? How many roots do we have?
We know the discriminant here is $\mathbf{b}^{\mathbf{2}} \mathbf{- 4 a c}$.
This discriminates between the three situations

1. The equation has two distinct roots ($b^{2}-4 a c>0$)
2. The equation has one repeated root ($\mathbf{b}^{2}-\mathbf{4 a c}=0$)
3. The equation has no real roots ($\mathbf{b}^{2}-4 \mathbf{a c}<0$)

Now think about $\mathbf{b}^{2}-\mathbf{3 a c}$. What could this represent?
Let's consider cubic curves; what shapes can they have?

They can have two turning points, or a point of inflection, or no stationary points at all.

Consider the curve $y=a x^{3}+b x^{2}+c x+d$.
How many turning points does this have?

$$
\begin{gathered}
\mathrm{y}^{\prime}=3 \mathrm{ax} \mathrm{x}^{2}+2 \mathrm{bx}+\mathrm{c}=0 \text { when } \\
x=\frac{-2 b \pm \sqrt{4 b^{2}-12 a c}}{6 a}=\frac{-b}{3 a} \pm \frac{\sqrt{b^{2}-3 a c}}{3 a} .
\end{gathered}
$$

So if $\mathbf{b}^{2}-\mathbf{3 a c}>0$, we have two distinct turning points.
If $\boldsymbol{b}^{2}-\mathbf{3 a c}=\mathbf{0}$, we have one repeated stationary point, that is, a point of inflection, and if $\mathbf{b}^{2}-\mathbf{3 a c}<0$, we have no real stationary points.

Note that if $\mathbf{b}^{2}=\mathbf{3 a c}$, then $\mathrm{y}^{\prime}=3 \mathbf{a}\left(\mathrm{x}+\frac{b}{3 a}\right)^{2}$
We might call \mathbf{b}^{2}-3ac 'the sifter'.
Keywords: cubic curve, stationary points, discriminant Jonny Griffiths, Paston College, Grammar School Road, North Walsham, Norfolk, NR28 9JL jonny.griffiths@paston.ac.uk

Home address:
20 Rosebery Road, Norwich, NR3 3NA jonny.griffiths@ntlworld.com

