The Sifter

Jonny Griffiths, Jan 2013

Consider the curve $y = ax^2 + bx + c$.

Where does it cross the x-axis? How many roots do we have?

We know the *discriminant* here is $b^2 - 4ac$.

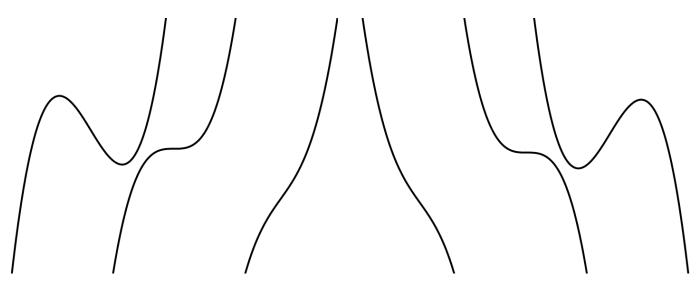
This discriminates between the three situations

1. The equation has two distinct roots $(b^2 - 4ac > 0)$

- 2. The equation has one repeated root $(b^2 4ac = 0)$
 - 3. The equation has no real roots $(\mathbf{b}^2 4\mathbf{ac} < 0)$

Now think about $b^2 - 3ac$. What could this represent?

Let's consider cubic curves; what shapes can they have?



They can have two turning points, or a point of inflection,

or no stationary points at all. Consider the curve y = ax³ + bx² + cx + d. How many turning points does this have?

y' =
$$3ax^2 + 2bx + c = 0$$
 when
$$x = \frac{-2b \pm \sqrt{4b^2 - 12ac}}{6a} = \frac{-b}{3a} \pm \frac{\sqrt{b^2 - 3ac}}{3a}$$

So if $\mathbf{b}^2 - \mathbf{3ac} > 0$, we have two distinct turning points. If $\mathbf{b}^2 - \mathbf{3ac} = \mathbf{0}$, we have one repeated stationary point, that is, a point of inflection,

and if $b^2-3ac < 0$, we have no real stationary points.

Note that if
$$\mathbf{b}^2 = \mathbf{3ac}$$
, then $\mathbf{y}' = \mathbf{3a}(\mathbf{x} + \frac{b}{3a})^2$

We might call **b²–3ac** 'the sifter'.

Keywords: cubic curve, stationary points, discriminant

Jonny Griffiths, Paston College, Grammar School Road,

North Walsham, Norfolk, NR28 9JL

jonny.griffiths@paston.ac.uk

Home address:

20 Rosebery Road, Norwich, NR3 3NA

jonny.griffiths@ntlworld.com