The curve $\mathbf{r} = \mathbf{\theta} + \frac{1}{\theta}$ for $\mathbf{\theta} > \mathbf{0}$ encloses a central area – what is this area in terms of π ?

Solution

The curve looks like this at the origin:

Let the coordinates of the point of intersection be (a, α) .

Then
$$\alpha + \frac{1}{\alpha} = (2\pi + \alpha) + \frac{1}{2\pi + \alpha}$$

Multiplying by $\alpha(2\pi + \alpha)$ we get;

$$\alpha^{2} + 2\pi\alpha - 1 = 0$$

So $\alpha = \sqrt{(\pi^{2} + 1)} - \pi$

So area =
$$\int_{\sqrt{\pi^2+1}-\pi}^{\sqrt{\pi^2+1}+\pi} \frac{1}{2} \left(\theta + \frac{1}{\theta}\right)^2 d\alpha$$

$$= \left[\frac{\theta^{3}}{6} + \theta - \frac{1}{2\theta}\right]_{\sqrt{\pi^{2}+1}-\pi}^{\sqrt{\pi^{2}+1}+\pi}$$

= (after a lot of neat simplification!) $\frac{4\pi^3}{3} + 4\pi$.

Jonny Griffiths, May 2008