The curve $r=\theta+\frac{1}{\theta}$ for $\theta>0$ encloses a central area -

 what is this area in terms of π ?Solution

The curve looks like this at the origin:

Let the coordinates of the point of intersection be (a, α).

$$
\begin{gathered}
\text { Then } \alpha+\frac{1}{\alpha}=(2 \pi+\alpha)+\frac{1}{2 \pi+\alpha} \\
\text { Multiplying by } \alpha(2 \pi+\alpha) \text { we get; } \\
\alpha^{2}+2 \pi \alpha-1=0 \\
\text { So } \alpha=\sqrt{ }\left(\pi^{2}+1\right)-\pi \\
\text { So area }=\int \sqrt{\pi^{2}+1}-\pi \frac{\sqrt{\pi^{2}+1}+\pi}{2}\left(\theta+\frac{1}{\theta}\right)^{2} d \alpha \\
=\left[\frac{\theta^{3}}{6}+\theta-\frac{1}{2 \theta}\right] \\
=\text { (after a lot of neat simplification!) } \frac{4 \pi^{3}}{3}+4 \pi
\end{gathered} .
$$

